

Module Description

University of AL-Kafeel / College..... Academic Year (2020-2021)

Stage:	Third		
Specialization:	Pharmacy		
Name of the Course in Arabic	الكيمياء الحياتية 1		
Name of the Course in English	Biochemistry I		
Goals:	To integrate key concepts describing the traditional core topics of Biochemistry: structure and metabolism. At the end of the semester the students should be able to understand the chemical structure, and function of all biomolecules present in the living organisms.		
Description			
Number of Theoretical lectures	3		
Number of Practical lectures	1		
Credits	4		
Name of Instructor in Arabic	علي فتاح ناصر		
Name of Instructor in English	Ali fattah		
Title	Assistant lecturer		
Academic email:	Ali.almusawi@alkafeel.edu.iq		
Phone number (WhatsApp)	07811611065		

Curriculum / Theoretical:

Week	Syllabus				
1	Introduction to the macromolecules biochemistry: Definitions and terms; proteins,				
	enzymes, DNA; Clinical value.				
2	Amino acids: Structures of A.A (table of standard A.A abbreviation and side chain);				
	Classification, properties, isomerism.				
3	Amino acids: Chemical reactions, Zwitter ions, titration curve calculating isoelectric				
	point values. Examples and questions. Non standards A.A: Structures, existence and				
	clinical value.				
4	Peptides: Peptide bond, resonance forms, isomers, physical properties and chemical				
	reactions. Essential poly peptides in human body, structures, roles and clinical values.				
5	Proteins: Structure and conformations of proteins, Primary structure, Secondary				
	structure (α helix, β sheet), tertiary structure, quaternary structure. Classification,				
	synthesis, cellular functions (Enzymes, cell signaling, and ligand transport,				
	structural proteins), protein in nutrition.				
6	Denaturation of proteins and protein sequencing: Determining A.A composition, N-				
	terminal A.A analysis, C- terminal A.A analysis, Edman degradation, prediction protein				
	sequence from DNA/ RNA sequences. Methods of protein study: Protein purification,				
	cellular localization, proteomics and bioinformatics, structure predication and				
	simulation.				
7	Carbohydrates: Chemistry and classification, biomedical importance, classification of				
	CHO, Stereochemistry of monosaccharides, metabolism of CHO; Physiologically				
	important monosaccharides, glycosides, disaccharides, polysaccharides.				
8	Lipids: Introduction, classification of lipids, fatty acids (F.A), nomenclature of F.A,				
	saturated F.A, unsaturated F.A, physical and physiological properties of F.A,				
	metabolism of lipids. Phospholipids, lipid peroxidation and antioxidants, separation				
	and identification of lipids, amphipathic lipids.				
9	Enzymes: Structures and mechanism, nomenclature, classification, mechanisms of				
	catalysis, thermodynamics, specificity, lock and key model, induced fit model,				
	transition state stabilization, dynamics and function, allosteric modulation. Biological				
10	function, cofactors, coenzymes, involvement in disease.				
10	Kinetics: General principles, factors effecting enzyme rates (substrate conc., pH, temperature, etc), single-substrate reaction (Michaelis-Menten kinetics), kinetic				
	constants. Examples of kinetic questions and solutions.				
	constants. Examples of kinetic questions and solutions.				

11					
11	Enzyme inhibition: Reversible inhibitors, competitive and non competitive inhibition,				
	mixed-type inhibition, Irreversible inhibition. Inhibition kinetics and binding affinities				
	(ki), questions and solutions.				
12	Control of activity and uses of inactivators; multi-substrate reactions, ternary-complex				
	mechanisms, ping-pong mechanisms, non-Michaelis-Menten kinetics, pre-steady-				
	state kinetics, chemical mechanisms.				
13	Nucleic Acid: Chemical structure, nucleic acid components, nucleic acid bases,				
	nucleotides and deoxynucleotides (Properties, base pairing, sense and antisense,				
	super-coiling, alternative structures, quadruple structures.				
14	Biological functions of DNA: Genes and genomes, transcription and translation,				
	replication.				
15	Biochemistry of extracellular and intracellular communication: Plasma membrane				
	structure and function; Biomedical importance, membrane proteins associated with				
	lipid bilayer, membranes protein composition, dynamic structures of membranes, a				
1.6	symmetric structures of membranes.				
16	Artificial membranes model, the fluid mosaic model, membrane selectivity,				
	physiological functions of plasma membranes.				
17	Biochemistry of the endocrine system: Classification of hormones, biomedical				
	importance, the target cell concept and hormone receptors, biochemistry of hormone				
	signal transduction.				
18	Special topics: Nutrition, digestion, and absorption. Biomedical importance, digestion				
	and absorption of carbohydrates, lipids, proteins, vitamins and minerals; energy				
	balance. Biochemistry of hemostasis and clot formation.				
19					
20					
21					
22					
23					
24					
25					
26					
27					
28					
29					
30					

Curriculum / Practical:

Week	Syllabus				
1	Effects of acids on carbohydrates: Molish test; Bials test; Anthron test; Seliwanoffs				
	test; Mucic acid test.				
2	Classification of carbohydrates according to reducing properties: Benedicts test;				
	Fehlings test; Barfoed test.				
3	Classification of carbohydrates according to reducing properties: lodine test;				
	Ozasone test.				
4	Determination of unknown carbohydrates sample.				
5	Color reactions of proteins: Biuret test; Ninhydrin test.				
6	Color reactions of proteins: Millons test; Hopkins-Cole test; unoxidized sulfur				
	test.				
7	Solubility of proteins (effects of acid, neutral salts, heavy metals, and alkaloidal				
	reagents).				
8	Determination of unknown sample of proteins.				
9	Experiments on solubility of lipids.				
10	Acrolin test for lipids; Soap; Studying properties of soap.				
11	Determination of saponification number.				
12	Properties of lipids: lodine test for lipids.				
13	Properties of enzymes: Effects of heat on enzymes.				
14	Properties of enzymes: Effect of concentration of enzyme (salivary amylase) on				
	reaction velocity.				
15	Properties of enzymes: Effect of pH on enzymatic activity.				

References :

Main References :

Harper's Illustrated Biochemistry, Latest edition [2]

[3]

Secondary References:

[1]

[2]			
[3]			